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A B S T R A C T   

Spectral vegetation index (VI) time series data from coarse resolution satellite sensors, such as the Moderate 
Resolution Imaging Spectroradiometer (MODIS), have been utilized in studying vegetation dynamics. Numerous 
studies have evaluated how well VI products capture variations in vegetation biophysical or physiological 
conditions. Equally important is to evaluate VI products over “zero vegetation” surfaces consisting of soils, litters, 
and/or rocks, as they define the lower bound for vegetation detection. VIs, however, vary over zero vegetation 
surfaces as a function of soil moisture content and surface roughness. In this study, we evaluated the behavior of 
VIs from Terra MODIS (T-MODIS), Aqua MODIS (A-MODIS), and Suomi-National Polar-orbiting Partnership 
Visible Infrared Imaging Radiometer Suite (S-VIIRS) at Railroad Valley Playa, Nevada for a period from April 
2013 to September 2019. The playa is a dried lakebed devoid of vegetation throughout the year. Long-term in situ 
reflectance measurements acquired over the 1 km-by− 1 km Radiometric Calibration Test Site (RadCaTS) located 
on the playa were obtained from the Radiometric Calibration Network (RadCalNet) portal and used as a refer
ence. Three VIs were analyzed, including the normalized difference VI (NDVI), enhanced VI (EVI), and two-band 
EVI (EVI2). RadCaTS NDVI, EVI, and EVI2 of the playa surface increased and decreased occasionally for the time 
period examined in this study, and the satellite NDVIs, EVIs, and EVI2s had comparable temporal signatures to 
the RadCaTS counterparts. T-MODIS and A-MODIS NDVI and EVI2 values were comparable to the RadCaTS 
counterparts, whereas T-MODIS and A-MODIS EVI values were lower than the RadCaTS counterparts by ~0.006 
and ~ 0.01 EVI units, respectively. All the three VIs of S-VIIRS were consistently higher than their RadCaTS 
counterparts by ~0.008 VI units, due to the higher near-infrared (NIR) reflectances of S-VIIRS than the RadCaTS 
NIR reflectance. The red and NIR, and red and blue reflectances each formed linear relationships (i.e., soil lines) 
for each of the three sensors. Variations in reflectance due to surface conditions and observation geometries all 
appeared as variations along these soil lines. The satellite red-NIR soil lines were comparable to the RadCaTS 
counterparts, whereas the satellite red-blue soil lines had steeper slopes than the RadCaTS counterparts due to a 
negative bias in the satellite blue reflectances. This translated into the T-MODIS and A-MODIS EVI behaviors 
different from those depicted by RadCaTS EVI, and the satellite NDVI and EVI2 behaving more comparably with 
the RadCaTS counterparts and across the three sensors than the satellite EVI.   

Objectives of the work  

• To evaluate how well MODIS and VIIRS vegetation indices (VIs) 
compared with in situ measured VIs in terms of seasonal/inter-annual 
variations and actual VI values for zero vegetation conditions  

• To determine the expected VI values and their variability due to a 
range of surface conditions and sun/view angles 

Background: Spectral VIs are one of more important satellite 
products in studying vegetation seasonal changes and inter-annual 
variability. Numerous studies have been conducted to validate and 
evaluate VI products over various vegetated surfaces, or VI sensitivity to 
variations in vegetation biophysical/physiological conditions. To the 
knowledge of the authors, there have been no studies that validated VI 
products over “zero vegetation” surfaces across seasons for multiple 
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years using in situ measurements as a reference. As multi-year, contin
uous field reflectance data over Railraod Valley Playa became recently 
available, we conducted this case study. 

1. Introduction 

Spectral vegetation index (VI) time series data from coarse resolution 
satellite sensors, such as the National Oceanic and Atmospheric 
Administration (NOAA) Advanced Very High Resolution Radiometer 
(AVHRR) and the National Aeronautics and Space Administration 
(NASA) Moderate Resolution Imaging Spectroradiometer (MODIS), 
have been utilized in various studies that involve vegetation dynamics, 
including ecosystem sensitivity analysis to climate variability, greening 
trend analysis, and drought assessment (Seddon et al., 2016; Zhang 
et al., 2017; Lu et al., 2019). Recently, medium spatial resolution VI time 
series data derived from the Landsat series or harmonized Landsat-8 and 
Sentinel-2 datasets were used to characterize vegetation phenology and 
land use dynamics in much finer spatial detail than what could be 
accomplished with coarse resolution satellite data (Zhu et al., 2016; 
Bolton et al., 2020; Liu et al., 2020). Yet, another set of studies inves
tigated the utility of hyper-temporal VI time series data derived from 
new-generation geostationary satellites such as the Advanced Himawari 
Imager (AHI), and Spinning Enhanced Visible and Infrared Imager 
(SEVIRI) for detecting vegetation seasonal changes and their inter- 
annual variability with higher accuracies than those derived from 
MODIS or Suomi-National Polar-orbiting Partnership (S-NPP) Visible 
Infrared Imaging Spectroradiometer Suite (VIIRS) (Barbosa et al., 2019; 
Miura et al., 2019; Yan et al., 2019). 

VIs are spectral transformations of multi-band reflectances, often 
involving the red and near-infrared (NIR) bands, designed to extract and 
enhance the signal contribution from green vegetation. They measure 
“vegetation greenness,” a composite property of leaf chlorophyll, leaf 
area, canopy cover, and canopy architecture (Jiang et al., 2008). 

Numerous studies have evaluated the behavior of VIs both theoretically 
and empirically, and validated satellite VI products to determine how 
well VIs capture seasonal changes and variations in vegetation bio
physical or physiological conditions (e.g., Yan et al., 2016; Cho and 
Ramoelo, 2019; Badgley et al., 2017; Shi et al., 2017). In these studies, 
VI temporal profiles from MODIS, AVHRR, and Medium Resolution 
Imaging Spectrometer (MERIS), for example, were cross-compared with 
those of in situ VIs derived from time-lapse cameras, radiation flux 
measurements, or tower-mounted spectrometers (Cheng et al., 2006; 
Muraoka et al., 2013; Rankine et al., 2017), leaf area index (LAI) (Qiao 
et al., 2020), gross primary productivity (GPP), (Wang et al., 2004; 
Olofsson et al., 2008; Huete et al., 2002), fraction of absorbed 
photosynthetically-active radiation (fAPAR) (Fensholt et al., 2004; 
Gitelson et al., 2014), and phenology observations (Liang et al., 2011; 
Liang et al., 2014). 

As equally important as evaluating VI sensitivity to vegetation 
greenness and biophysical parameters is to evaluate VI behavior over 
“zero vegetation” surfaces consisting of soils, litters, and/or rocks. VI 
values for zero vegetation define the lower bound below which 
photosynthetically-active vegetation is considered non-existent. In other 
words, any positive deviations from this baseline are considered the 
contributions from green vegetation. However, VIs over zero vegetation 
surfaces have been known to vary as a function of soil type, soil moisture 
content, soil organic matter content, and surface roughness, resulting in 
errors/uncertainties of VI-based detection and quantification of green 
vegetation (Montandon and Small, 2008; Yoshioka et al., 2010). 

VI behavior and variability for zero vegetation conditions, or bare 
soils, have been investigated from two perspectives. One perspective is 
for the estimation of fractional vegetation cover (FVC) with the 
normalized difference vegetation index (NDVI) where best VI values for 
bare soils were obtained as a statistical moment of multi-year NDVI time 
series image data (Gutman and Ignatov, 1998; Zeng et al., 2000; Ichii 
et al., 2001; Matsui et al., 2005). The other perspective has focused on 

Fig. 1. Map of study area, Railroad Valley Playa, Nevada (left). The squares on the left and lower-right frames indicate the 1 km-by− 1 km Radiometric Calibration 
Test Site (RadCaTS) area. The left frame also indicates the location of the Blue Eagle Ranch weather station. The false-colour image used on the left and lower-right 
frames is an image acquired with the Terra ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) sensor on 1 September 2018. (For inter
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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characterizing variations in actual soil reflectances. Red and NIR re
flectances of soils have been known to form a linear relationship in the 
reflectance space, called the “soil line” concept (Huete, 1989; Baret 
et al., 1993). Variations of soil lines have been used as a means to 
examine the influences of soil reflectance variations on VIs (Galvão and 
Vitorello, 1998; Yoshioka et al., 2010). These studies with two different 
perspectives have come to suggest the need of spatially-varying VI 
values for zero vegetation conditions in order to reduce the errors/un
certainties of VI-based vegetation detection (Baret et al., 1993; Fox et al., 
2004; Montandon and Small, 2008; Wu et al., 2014). Nearly all of these 
studies were conducted solely with model-simulated data, numerical 
analysis, laboratory-measured spectral data, or satellite image data. 

In this study, we evaluated MODIS and VIIRS VIs under zero vege
tation conditions using Railroad Valley Playa, Nevada as a study site. 
The playa is a dried lakebed devoid of vegetation throughout the year. 
Long-term in situ reflectance and atmospheric measurements have been 
made continuously since the year 2013 on the playa (Czapla-Myers 
et al., 2016). This dataset has recently been made available to the public 
via the Radiometric Calibration Network (RadCalNet) (Bouvet et al., 
2019). The long-term, continuous nature of the dataset allows for 
comparisons with MODIS and VIIRS VI data throughout seasons across 
multiple years for a zero vegetation surface. A primary objective of this 
study was to evaluate how well MODIS and VIIRS VIs compared with in 
situ measured VIs in terms of seasonal/inter-annual variations and actual 
VI values. MODIS and VIIRS reflectances were also compared with the in 
situ reflectances from the same perspectives. This analysis was con
ducted on nadir/near-nadir observations as the in situ measurements 
were made with nadir viewing geometry. MODIS and VIIRS VI products 
can include observations made from a wide range of view zenith angles 
as these widely-used products are not normalized to a standard geom
etry with a bi-directional reflectance distribution function (BRDF)- 
correction model. Off-nadir VI values would likely be different from 
their nadir counterparts as directional reflectances of soils vary with the 
position of the Sun and observer (Irons et al., 1992; Wang et al., 2014). 
Thus, our secondary objective was to examine how different off-nadir VI 
values were from their nadir values and how much additional variation 
off-nadir VIs introduced to that observed on nadir VIs in the above. To 
the knowledge of the authors, this is the first study that validated MODIS 
and VIIRS VI products and quantified their variability over zero vege
tation surfaces using in situ measurements as a reference across seasons 

for multiple years. 

2. Railroad Valley Playa and Radiometric Calibration Test Site 
(RadCaTS) 

Railroad Valley (RRV) Playa, Nevada is a flat, dried lakebed devoid 
of vegetation all year around (Fig. 1). It is located approximately be
tween the two towns of Tonopah, Nevada and Ely, Nevada, and under 
the United States Bureau of Land Management stewardship. The mean 
annual precipitation measured at the two nearest long-term weather 
stations of Tonopah and Ely are 130 mm and 250 mm, respectively 
(based on 1981–2010 data) (Czapla-Myers, 2018). 

The playa is a well-established site for the vicarious calibration of 
solar-reflective spectral bands of various satellite sensors, including 
Terra MODIS (T-MODIS), Aqua MODIS (A-MODIS), and S-NPP VIIRS (S- 
VIIRS) (Czapla-Myers et al., 2017). The playa has also been used for 
long-term stability monitoring of Earth Observing-One Hyperion 
(Campbell et al., 2013), and cross-calibration across the Landsat series 
(Teillet et al., 2006; Teillet et al., 2007) and between the Advanced 
Spaceborne Thermal Emission Reflection Radiometer (ASTER) and 
Terra MODIS visible to near-infrared (NIR) bands (Obata et al., 2017). 
Likewise, it has been used to evaluate AERONET-based surface reflec
tance validation network (ASRVN) (Wang et al., 2011) and the surface 
reflectance products derived from T-MODIS, MERIS, Terra Multi-angle 
Imaging Spectroradiometer (MISR), and Landsat-7 Enhanced Thematic 
Mapper Plus (ETM+) with those acquired with a multi-angular and 
multi-spectral airborne radiometer instrument, the Cloud Absorption 
Radiometer (CAR) as a reference (Kharbouche et al., 2017). Yates et al. 
(2013) used the playa to study carbon fluxes of soils under no 
vegetation. 

Optically, the playa is characterized with its high surface reflectance 
(Fig. 2), but the reflectance is known to fluctuate across seasons due 
primarily to the moisture content of the surface (Czapla-Myers et al., 
2008). Bruegge et al. (2019) reported that the surface reflectance sta
bilized after approximately 1–2 weeks of dry conditions. As the surface 
dries out, a white crust often forms on the surface and increase the 
surface reflectance (Czapla-Myers et al., 2008). The crust is not uni
formly distributed on the playa (Czapla-Myers et al., 2007). The playa 
surface typically has cracks due to shrink-swell clays composing the 
surface. 

Fig. 2. Typical hyperspectral reflectance of the 
Radiometric Calibration Test Site (RadCaTS) on 
Railroad Valley Playa plotted along with the 
normalized spectral responses of Terra MODIS (T- 
MODIS), Aqua MODIS (A-MODIS), and Suomi-NPP 
VIIRS (S-VIIRS) red, NIR, and blue bands. The 
hyperspectral reflectance was acquired at 12:00 pm 
PST (Pacific Standard Time) on 1 June 2016. The 
dotted lines above and below the playa spectral 
reflectance are their standard uncertainties. (For 
interpretation of the references to colour in this 
figure legend, the reader is referred to the web 
version of this article.)   
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Bruegge et al. (2019) characterized the BRDF of the playa surface 
reflectance with a number of datasets acquired with field instruments 
such as the Portable Apparatus for Rapid Acquisition of Bidirectional 
Observation of the Land and Atmosphere (PARABOLA), and the MISR 
and MODIS sensors. They found that the off-nadir correction factor, 
which is the ratio of bi-directional reflectance factor (BRF) at a given 
view zenith and azimuth angles to the nadir-view BRF at the same sun 
position, is consistent in time and space for view zenith angles as large as 
30◦, and spectrally invariant. 

In this study, we used in situ surface reflectance time series mea
surements from the Radiometric Calibration Test Site (RadCaTS) 
maintained by the University of Arizona Remote Sensing Group as a 
reference. The RadCaTS site is a 1 km-by− 1 km area delineated on 
Railroad Valley Playa (38.497◦N, 115.690◦W, 1435 m above mean sea 
level) (Fig. 1). The RadCaTS facility is a suite of instruments to make in 
situ measurements of the surface and atmosphere to predict the “top-of- 
atmosphere (TOA)” spectral radiance reflected from the earth’s surface 
during daytime, clear-sky conditions (Czapla-Myers et al., 2016). Rad
CaTS is one of four sites that constitute the RadCalNet managed by the 
the Committee on Earth Observation Satellites (CEOS) Working Group 
on Calibration and Validation (WGCV) (Bouvet et al., 2019). 

RadCaTS data products have been made available via the RadCalNet 
portal (Bouvet et al., 2019). The products include hyperspectral “bot
tom-of-atmosphere (BOA)” reflectance and hyperspectral TOA radiance 
(400–2500 nm at 10 nm sampling intervals) representing the 1 km- 
by− 1 km area at 30 min intervals from 9:00 to 15:00 Pacific Standard 
Time (PST). The site is viewed with four multi-band ground-viewing 
radiometers (GVRs) of which locations were carefully chosen to repre
sent the surface reflectance of the 1 km-by− 1 km area (Czapla-Myers 
et al., 2007). To obtain a hyperspectral reflectance for a given date and 
time, the four GVR’s reflected radiance measurements are averaged and 
converted into multi-band surface reflectances using incoming surface 
irradiances predicted with the MODTRAN radiative transfer code con
strained with in situ and satellite atmospheric measurements. A hyper
spectral surface reflectance is selected from a database of in situ 
hyperspectral datasets that best-matches the GVR’s multi-band surface 
reflectances. Czapla-Myers et al. (2016) describes the algorithm used to 
obtain RadCaTS hyperspectral surface reflectances in detail. 

According to Czapla-Myers and Woolliams (2018), the sources of 
uncertainty associated with the surface reflectance are the uncertainties 
associated with the GVR measurements, MODTRAN radiative transfer 
model, exo-atmospheric solar irradiance, and picking of hyperspectral 
reflectance from the database. The combined, standard uncertainty of a 
surface reflectance ranges from 3.6% to 5.3%, depending on the wave
lengths, but about 5% on average (Czapla-Myers and Woolliams, 2018). 

3. Materials and methods 

3.1. RadCaTS data 

RadCaTS hyperspectral BOA reflectance data (Input Version 4) were 
downloaded from the RadCalNet portal (Bouvet et al., 2019). The 
downloaded data covered a period from 1 April 2013 to 20 September 
2019. The surface reflectances were band-averaged to represent T- and 
A-MODIS, and S-VIIRS bandpass reflectances for the red, NIR, and blue 
bands (Bands 1, 2, and 3, respectively, for MODIS, and I1, I2, and M3, 
respectively, for VIIRS) using their respective spectral response func
tions (Fig. 2) 

ρb =
∑N

i=1
wb,iρG,i (1)  

and 

∑N

i=1
wb,i = 1 (2) 

where ρb is the band-averaged reflectance for band b, ρG,i is the 
hyperspectral reflectance at the wavelength i, and wb,i is the normalized 
spectral response for b at i. A-MODIS spectral responses (MODIS Char
acterization Support Team, 2020) were used to represent both T-MODIS 
and A-MODIS band reflectances as their bandpass differences were 
found negligible in a Hyperion-based spectral band compatibility study 
(Miura and Yoshioka, 2018). For S-VIIRS bands, S-VIIRS Modulated 
Relative Spectral Responses (RSR) Release 1.0 was adopted. The 
modulated RSR represent a snapshot of VIIRS spectral performance for 1 
February 2013 (orbit 6557) (NOAA STAR Calibration Center, 2017). The 
S-VIIRS spectral responses were expected to change over time due to the 
gradual darkening of the VIIRS rotating telescope assembly (RTA) 
mirror (Cao et al., 2014). By 1 February 2013, approximately 75% of the 
expected on-orbit mirror darkening had occurred and the remaining 
25% darkening was assumed to have occurred at ever-decreasing rates 
over the following 4 years of the S-VIIRS mission. It should be noted that, 
whereas MODIS and S-VIIRS red and NIR bandpasses considerably 
overlap, their blue bandpasses overlap very little (Fig. 2). In addition to 
the imagery resolution (375 m at nadir) red and NIR bands, S-VIIRS is 
equipped with moderate-resolution red (M5) and NIR (M7) bands that 
have the same spatial resolution (750 m at nadir) as the M3 band. In this 
study, RadCaTS reflectance data were band-averaged to represent I1 and 
I2 band reflectances because the standard S-VIIRS VI products used I1 
and I2 as their input red and NIR reflectances, respectively (Vargas et al., 
2013; Didan et al., 2018). 

RadCaTS NDVI, EVI, and EVI2 were computed from the MODIS and 
S-VIIRS bandpass reflectances 

NDVI =
ρNIR − ρred

ρNIR + ρred
(3)  

EVI = G
ρNIR − ρred

ρNIR + C1ρred − C2ρblue + L
(4)  

EVI2 = G
ρNIR − ρred

ρNIR + Cρred + L
(5) 

The EVI coefficients of G, C1, C2, and L were set to 2.5, 6, 7.5, and 1, 
respectively, for both the MODIS and VIIRS bandpass reflectances 
(Huete et al., 2002). The EVI2 coefficients of G, C, and L were set to 2.5, 
2.4, and 1, respectively, which were obtained to attain the best 
compatibility with the EVI for MODIS bandpasses, but used for both the 
MODIS and VIIRS bandpass reflectances (Jiang et al., 2008). 

Made along with the band-averaging and VI computation was the 
propagation of RadCaTS hyperspectral reflectance uncertainty. Every 
RadCaTS hyperspectral reflectance was provided with per-band stan
dard uncertainty values. The standard uncertainty of ρb, denoted by u 
(ρb), was estimated from the standard uncertainties of ρG,i, denoted by u 
(ρG,i), by the law of propagation of uncertainty (Taylor and Kuyatt, 
2007) 

u2(ρb) =
∑N

i=1

∑N

j=1
wb,iwb,ju

(
ρG,iρG,j

)

=
∑N

i=1
wb,iu2( ρG,i

)
+ 2

∑N− 1

i=1

∑N

j=i+1
wb,iwb,ju

(
ρG,i

)
u
(
ρG,j

)
ri,j (6) 

where ri,j is the correlation coefficient between the errors in ρG,i and 
ρG,j. The NDVI uncertainty due to the RadCaTS reflectance, u(NDVI), 
was estimated from u(ρb) with the NDVI uncertainty propagation 
equation (Miura et al., 2000) 

u2(NDVI) =
(

∂NDVI
∂ρNIR

)2

u2(ρNIR)+

(
∂NDVI
∂ρred

)2

u2(ρred)

+ 2
∂NDVI
∂ρNIR

∂NDVI
∂ρred

u(ρNIR)u(ρred)rNIR,red

(7)  

and 
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∂NDVI
∂ρNIR

=
2ρred

(ρNIR + ρred)
2 (8)  

∂NDVI
∂ρred

=
− 2ρNIR

(ρNIR + ρred)
2 (9) 

The uncertainty propagation equations for the EVI and EVI2 are 
provided in Appendix I. 

In using these uncertainty propagation equations, the band-to-band 
correlation of 0.75 was assumed for all the band pairs. As described in 
Section 2, the playa reflectance is known to fluctuate across seasons due 
primarily to the moisture content of the surface. Thus, the selected 
spectral reflectance would most likely differ from unmeasured “true” 
spectral reflectance not in spectral signature, but in overall magnitude 
(Czapla-Myers et al., 2016), making positively-correlated errors across 
bands reasonable. To find an appropriate band-to-band correlation 
value, we computed uncertainties of the band-averaged MODIS re
flectances and VIs at 12:00 pm PST for the entire data period (1 April 
2013 to 20 September 2019) with the correlation coefficient values 
between 0 and 1 at 0.05 intervals. The propagated uncertainties linearly 
increased with increasing correlation values for the band-averaged re
flectances (Fig. 3). The VI uncertainties were, however, the highest 
when the band-to-band correlations were 0.40, lower and about the 
same when they were 0 and 0.75, and the smallest when they were unity 
(Fig. 3). Given that the picking of a representative spectrum from the in 
situ hyperspectral reflectance database is one significant source of the 
RadCaTS surface reflectance uncertainty (Czapla-Myers and Woolliams, 
2018), the correlation value of 0.75 was assumed for this study. 

3.2. Satellite data 

T-MODIS and A-MODIS daily gridded surface reflectance products 
(MOD09GA and MYD09GA Collection 6, respectively) (Vermote and 
Wolfe, 2015a; Vermote and Wolfe, 2015b) were obtained for the same 
period of 1 April 2013 to 20 September 2019 from the NASA EarthData 
(https://earthdata.nasa.gov/). Four 500-m pixels located over the 
RadCaTS 1 km-by-1 km area were extracted from the daily gridded 
products. The extracted pixels (4 pixels per day for each of T-MODIS and 
A-MODIS) were subjected to per-pixel quality assessment (QA)-flag 
screening, and retained only when all the four pixels passed the QA-flag 
screening. Six per-pixel QA flags were used for the screening: land, 
confidently clear, no adjacent cloud, no snow, no MOD09/MYD09- 

internal cloud, and no MOD09/MYD09-internal snow. Other QA-flags 
were also examined but, due mainly to the aerosol quantity flag which 
misclassified the bright playa surface as a hazy atmosphere (Bruegge 
et al., 2019), resulted in apparent overscreening of pixel observations, 
and left a small number of observations in the derived time series data 
upon the screening. The NDVI, EVI, and EVI2 (Eqs. 3, 4, and 5, respec
tively) were computed after the screening. They were reduced into daily 
mean and standard deviation values along with the input red, NIR, and 
blue reflectances, and view zenith and azimuth, and sun zenith and 
azimuth angles. The RadCaTS site is a well-characterized, 1 km-by-1 km 
area located in the middle of a much larger, spatially extensive and 
pseudo-homogeneous playa surface (Fig. 1). This very nature of the site 
should have served to minimize or to reduce the impacts of pixel mis- 
registration and deformation onto the analysis. We estimated, using 
the mis-registration and footprint dimension parameters found in Wolfe 
et al. (1998, 2002), that MODIS pixel observations with a range of 
footprint sizes and mis-registration were always located within the playa 
surface whereas their coverage could extend beyond the 1 km-by-1 km 
RadCaTS area. 

S-VIIRS VI, surface reflectance, and geo-angle swath/granule prod
ucts (VIVIO, IVISR, and GITCO, respectively) (Vargas et al., 2013; Ver
mote et al., 2014; Wolfe et al., 2013) were obtained for a period from 1 
April 2013 to 31 August 2019 from the NOAA Comprehensive Large 
Array-data Stewardship System (https://www.class.noaa.gov). The 
NDVI and EVI contained in the VI products, red (I1), NIR (I2), and blue 
(M3) reflectances contained in the surface reflectance products, and 
view zenith and azimuth, and sun zenith and azimuth angles contained 
in the geo-angle products were remapped, by nearest neighbor resam
pling, onto a 0.00375-degree linear latitude-longitude grid for a 70 km- 
by-70 km region having the RadCaTS 1 km-by-1 km area at the center. 
Before the remapping, VIIRS moderate-resolution layers, including blue 
(M3) reflectance, view zenith and azimuth, and sun zenith and azimuth 
angles, were spatially pseudo-enhanced into the imagery resolution by 
repeating one moderate-resolution pixel four times (2-by-2) to retain the 
original imagery-to-moderate resolution band integrity. The remapping 
was performed on a per-orbit basis as VIIRS ground swaths from two 
adjacent orbits overlapped significantly (~30%). After the remapping, 
the EVI2 was computed from the red and NIR reflectances (Eq. 5), and 
the EVI was multiplied by 1.25 to adjust the gain as the gain factor of 2.0 
was adopted in the VIIRS VI algorithm (Vargas et al., 2013). Every VIIRS 
subset scene was then visually inspected for cloud or shadow contami
nations using true- and false-colour composites, and labeled as 

Fig. 3. Changes in the mean uncertainties of the MODIS bandpass reflectances and VIs as a function of band-to-band correlation in the RadCaTS hyperspectral 
reflectance errors. 
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confidently clear, probably clear, probably cloudy/shadowy, or confi
dently cloudy/shadowy. VI, reflectance, and geo-angle data were 
extracted over a 3 pixels-by-3 pixels window corresponding to the 
RacCaTS 1 km-by-1 km area from every VIIRS scene labeled as confi
dently clear or probably clear, and reduced into means and standard 
deviations. 

Three additional data screening procedures were applied to the 
derived T-MODIS, A-MODIS, and S-VIIRS time series data. First, 
apparent outliers whose reflectances or VIs were either extremely higher 
or lower than all other points were identified. For every apparent 
outlier, true- and false-colour composites and daily weather data 
(described in Section 3.3 below) of the corresponding dates were 
examined. We removed them when the corresponding true- and false- 
colour composites indicated the presence of clouds or cloud shadows, 
or when it rained on the corresponding dates. Second, those observa
tions with negative EVI values were considered invalid and removed 
from the dataset. Visual inspections of true- and false-colour composites 
of all these negative EVIs indicated that they were associated with cloud 
shadows. Finally, we removed those reflectances or VIs with large 
standard deviations. Visual inspection of the corresponding true- and 
false-colour composites indicated that they were associated with clouds 
and cloud shadows, or pixels coming from two different orbits for T- 
MODIS and A-MODIS data. 

The VIIRS atmospheric correction algorithm is a heritage of the 
MODIS atmospheric correction algorithm (Vermote et al., 2014). Their 
main algorithmic differences, as implemented in generating the MODIS 
and VIIRS surface reflectance products used in this study, were in their 
atmospheric water vapor data sources and aerosol retrieval algorithms. 
Whereas the MODIS algorithm used MODIS precipitable water vapor 
products, the National Center for Environmental Prediction (NCEP) 
precipitable water vapor products were used in the VIIRS atmospheric 
correction (Jackson et al., 2013; Vermote and Kotchenova, 2008). Both 
MODIS and VIIRS aerosol retrievals were made with a modified version 
of the dark target (DT) approach (Kaufman et al., 1997). In brief, this 
approach retrieved aerosol optical thickness based on an empirically- 
derived, expected relationship between the blue and red surface re
flectances (Vermote and Kotchenova, 2008; Jackson et al., 2013). In the 
VIIRS algorithm, the globally-constant blue-to-red band ratio of 0.645 
was used (Jackson et al., 2013). In the MODIS algorithm, the band ratio 
was defined as a function of the surface brightness, but apparently 
around 0.5 (Vermote and Saleous, 2006). 

3.3. Weather data 

Daily weather data (precipitation, snowfall, and maximum and 
minimum temperatures) at the Blue Eagle Ranch weather station (N 
38.5208◦ and W 115.5444◦ at 1425.9 m above MSL) (Fig. 1) were ob
tained from the Global Historical Climatology Network of the NOAA 
National Center for Environmental Information (https://www.ncdc. 
noaa.gov/data-access/land-based-station-data/land-based-datasets/glo 
bal-historical-climatology-network-ghcn). The data record at the station 
covered a period from 1 April 1978 to 1 April 2019 and, thus, we ob
tained data from 1 January 2013 to 31 March 2019. This daily data 
record was reduced into monthly time series data. Daily precipitation 
and snowfalls were summed over every month, and daily maximum and 
minimum temperatures were averaged over every month period to 
obtain monthly values. 

3.4. Data analysis 

We first compared MODIS and VIIRS nadir VIs and reflectances (view 
zenith angle, θv, < 1.8◦ for both T-MODIS and S-VIIRS) to the RadCaTS 
counterparts. As there were no nadir observations with A-MODIS over 
the site, we selected those observations of which view zenith angles were 
closest to nadir (θv = 4–5.6◦ in the backward scattering direction with 
respect to the Sun position, and θv = 6–7.7◦ in the forward scattering 

direction with respect to the Sun position). RadCaTS data acquired at 
10:30 am PST, 1:00 pm PST, and 12:30 pm PST were used to compare 
with T-MODIS, A-MODIS, and S-VIIRS data, respectively, based on the 
solar positions. 

The number of coincident satellite-RadCaTS observations were 
typically 10 per year for T-MODIS, A-MODIS, and S-VIIRS, as RadCaTS 
data were not always available when satellite data were available. In 
order to utilize all the available data for the satellite-RadCaTS com
parison, we employed multiple linear regression with dummy variables 

y = β0 + β1t+ β2S+ β3t∙S + ε (10) 

where y is the reflectance or VI, t is the observation date of y, S is the 
dummy variable where S = 1 for y being a satellite observation and S =
0 for y being an in situ RadCaTS observation, βi (i = 0, 1, …, 3) are the 
regression coefficients, and ε is the unexplained error term. When β2 is 
significant, the satellite and ground observations are subject to a sys
tematic difference. When β3 is significant, the satellite temporal trend 
had a different slope from that of the ground measurements. The model 
was fit in a step-wise manner, i.e., first only with β0 and β1, then with β0, 
β1 andβ2, and finally as a full model with all the four parameters (β0 - β3) 
to estimate. 

As the above regression analysis assumed linear trends, the non- 
parametric Mann-Kendall (MK) monotonic trend test was also per
formed to examine whether each reflectance or VI temporal dataset had 
an increasing or decreasing trend (Kendall, 1975; Hipel and McLeod, 
1994; Libiseller and Grimvall, 2002). The MK test has been utilized for 
identifying temporal and spatial trends in the NDVI and fractional 
vegetation cover (Bhimala et al., 2020; Wu et al., 2014). Kendall’s τ was 
used to evaluate the direction of the monotonic trend (i.e., decreasing or 
increasing). The MK tests were performed using R 4.0.2 (R Core Team, 
2020) and the trend (v1.1.4; Pohlert, 2020) package in this study. 

We then investigated the behavior of off-nadir VIs for each of T- 
MODIS, A-MODIS, and S-VIIRS. Each of the T-MODIS, A-MODIS, and S- 
VIIRS datasets was divided into subsets based on view zenith angles. For 
each satellite, a limited number of distinctive view zenith angles 
occurred for the RadCaTS site. View zenith angle bins were designated 
to correspond to these view zenith angle ranges (Table 1). 

Two analyses were performed on the subsets. First, we plotted the 
view zenith angle against the red, NIR, and blue reflectances for each 
satellite to examine the changes in the reflectance and variations as a 
function of view zenith angle. Second, the soil line equation was fit to 
NIR-red reflectance pairs for every subset (view zenith angle bin) and we 
examined variations in the fitted soil lines across the view zenith angle 
bins (e.g., Yoshioka et al., 2010) 

RsN = aRsR + b (11) 

where a and b are the soil line parameters, and RsN and RsR are the 

Table 1 
View zenith angle bins designated for satellite data subsets.  

Satellite 
Sensor 

T-MODIS A-MODIS S-VIIRS 

Number of 
Bins 

9 for each of 
forward and 
backward scattering 
directions 

9 for each of 
forward and 
backward scattering 
directions 

11 for each of 
forward and 
backward scattering 
directions 

View 
Zenith 
Angle 
Bins 

0.0◦-1.8◦

10.0◦-13.3◦

21.1◦-24.2◦

30.7◦-33.6◦

39.1◦ − 41.8◦

46.1◦-48.6◦

52.0◦-54.3◦

56.9◦-59.0◦

61.1◦<

3.9◦-7.7◦

15.6◦ − 19.0◦

26.0◦-29.0◦

35.4◦-37.6◦

43.2◦ − 44.9◦

49.9◦-51.0◦

55.3◦-56.1◦

59.7◦-60.4◦

62.9◦<

0.0◦ − 1.8◦

8.9◦-11.9◦

18.9◦-21.5◦

27.9◦-30.3◦

36.1◦-37.9◦

43.0◦-44.5◦

48.7◦-50.3◦

53.7◦-55.3◦

57.9◦-59.7◦

61.6◦ − 63.4◦

64.9◦<
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NIR and red reflectances of the playa, respectively. We applied the same 
analysis to the red-blue reflectance relationship where the red reflec
tance was regressed against the blue reflectance. Since the primary 
source of variability in the playa surface reflectance was the moisture 
content (see Section 2), we expected the red and NIR, and red and blue 
reflectances each to form a soil line in their respective cross-reflectance 
spaces for every view zenith angle bin. With respect to view zenith 

angles, we expected that soil lines would be slightly different across view 
zenith angle bins. Wang et al. (2014) reported their laboratory experi
ment results in which soil reflectance was higher in the backward 
scattering direction than in the forward scattering direction, but 
exhibited a greater range of values in the NIR than at the visible 
wavelengths (i.e., wavelength-dependent). 

Fig. 4. Comparison of weather data at the Blue Eagle Ranch weather station and playa surface reflectance measured by the RadCaTS facility. (a) Monthly pre
cipitation, (b) monthly snowfall, and maximum and minimum monthly temperatures, and (c) RadCaTS surface reflectance band-averaged for MODIS red bandpass 
acquired at 12:00 pm PST. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. VIs derived from RadCaTS-measured surface reflectances (MODIS bandpasses, 12:00 pm PST): (a) NDVI, (b) EVI, and (c) EVI2. The gray vertical bars are the 
standard uncertainty. 
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Fig. 6. Comparison of satellite-measured surface reflectances to RadCaTS (ground-measured) counterparts over the RadCaTS site: (a) T-MODIS red, (b) A-MODIS red, 
(c) S-VIIRS red, (d) T-MODIS NIR, (e) A-MODIS NIR, (f) S-VIIRS NIR, (g) T-MODIS blue, (h) A-MODIS blue, and (i) S-VIIRS blue reflectances. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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4. Results 

4.1. Weather and RadCaTS data 

Monthly precipitation varied largely throughout the study period, 
with weak seasonality of higher winter rainfall (Fig. 4a). Snowfalls also 
varied from year to year, but only occurred from November to March 
(Fig. 4b). The highest monthly maximum and minimum temperatures 
occurred in July every year, except for the year 2015, and the former 
was about the same throughout the study period (Fig. 4b). The 
maximum and minimum temperatures of the winter months varied from 
year to year and were lower for the winters with a higher snowfall 
amount (i.e., 2013, 2014, and 2016). 

Plotted in Fig. 4c are RadCaTS red reflectance values, band-averaged 
for the MODIS bandpass. The red reflectance ranged from 0.3 to 0.45, 
varying throughout the study period. The reflectance was generally 
higher in April to May and lower in October to December, but did not 
change seasonally in a predictable cyclic manner and varied from year to 
year. Overall, the red reflectance decreased during the study period 
according to the simple linear regression analysis and MK test results 
[slope = − 1.50e-5 per day (p-value <0.001) and τ = − 0.242 (p-value 

<0.001), respectively]. RadCaTS NIR and blue reflectances temporally 
varied in parallel to the red reflectance (not shown here). Their means 
and standard deviations were 0.396 ± 0.033 (NIR) and 0.243 ± 0.030 
(blue), and both reflectances had decreasing trends [slope = − 1.70e-5 
per day (p-value <0.001) and τ = − 0.262 (p-value <0.001) for the NIR; 
and slope = − 1.16e-5 per day (p-value <0.001) and τ = − 0.207 (p-value 
<0.001) for the blue]. 

The NDVI, EVI, and EVI2 computed from those RadCaTS reflectances 
were very low, and all had reasonably flat temporal signatures while 
being subject to short-term variations (Fig. 5). The NDVI had a very 
weak decreasing trend, but it was not statistically significant [slope =
− 5.10e-7 per day (p-value = 0.13) and τ = − 0.032 (p-value = 0.14)], 
whereas the EVI and EVI2 had decreasing trends (slope = − 2.28e-6 per 
day and − 1.25e-6 per day, respectively, and τ = − 0.145 and − 0.089, 
respectively, and p-value <0.001 for all). 

4.2. Satellite and RadCaTS comparison of reflectances 

The red, NIR, and blue reflectances of all the three sensors increased 
and decreased at the same time as their in situ counterparts, following 
the comparable seasonal and inter-annual changes throughout the study 
period (Fig. 6). Both the means and regression analysis results indicated 
that T-MODIS and A-MODIS red reflectances were higher than their 
RadCaTS counterparts by ~0.01 (Tables 2 and 3). T-MODIS and A- 
MODIS NIR reflectances were also higher than their in situ counterparts 
by more than 0.01. VIIRS red reflectance was not different from the in 
situ counterpart, whereas VIIRS NIR reflectance was slightly higher than 
the in situ counterpart. T-MODIS and A-MODIS blue reflectances were 
consistently lower than the RadCaTS counterparts by ~0.05. S-VIIRS 
blue reflectance was also lower than the RadCaTS counterpart by 
~0.007. The regression analysis results indicated that all these satellite 
reflectances had the same decreasing trends as their respective in situ 
counterparts (b1 being negative values and b3 not significant; see 
Table 3). The MK test results also indicated that all the satellite and in 
situ reflectances had decreasing trends (negative τ values; see Table 4). 

4.3. Satellite and RadCaTS comparison of VIs 

The NDVI of all the three satellite sensors increased and decreased at 
the same time as their in situ counterparts (Fig. 7a-c). The satellite NDVIs 
noticeably increased during the last half of the year 2016, which cor
responded to a period of low reflectances (see Fig. 6). T-MODIS NDVI 
was only slightly higher than the RadCaTS (by 0.003 NDVI units) 
(Table 5 and b2 in Table 6). A-MODIS NDVI appeared slightly lower than 
the RadCaTS counterpart for 2013–2015, but were comparable with 
RadCaTS for the reminder of the period. S-VIIRS NDVI were consistently 
higher than the RadCaTS counterpart. 

Table 2 
Summary statistics of satellite (near-nadir observations only) and RadCaTS reflectances over the RadCaTS site. The numbers in parentheses are standard deviations.  

Sensor Red Reflectance NIR Reflectance Blue Reflectance 

Satellite RadCaTS Satellite RadCaTS Satellite RadCaTS 

T-MODIS 0.367 (0.030) 0.356 (0.032) 0.405 (0.031) 0.391 (0.033) 0.191 (0.020) 0.241 (0.029) 
A-MODIS 0.363 (0.033) 0.354 (0.031) 0.401 (0.032) 0.392 (0.033) 0.192 (0.021) 0.240 (0.029) 
S-VIIRS 0.355 (0.028) 0.356 (0.032) 0.399 (0.030) 0.394 (0.033) 0.249 (0.026) 0.257 (0.030)  

Table 3 
Results of regression analysis with dummy variables for satellite (near-nadir 
observations only) and RadCaTS reflectances. The numbers in parentheses are 
standard errors.  

Band Sensor Parameter Estimatea (Standard Error) 

b0 b1 b2 b3 

Red T- 
MODIS 

6.49e-01 
(2.21e-02) *** 

-1.73e-05 
(1.30e-06) *** 

1.10e-02 
(3.54e-03) ** 

n. 
s. 

A- 
MODIS 

6.07e-01 
(2.28e-02) *** 

-1.49e-05 
(1.34e-06) *** 

1.03e-02 
(2.81e-03) *** 

n. 
s. 

S-VIIRS 6.14e-01 
(2.35e-02) *** 

-1.52e-05 
(1.38e-06) *** 

8.50e-05 
(3.74e-03) n.s. 

n. 
s. 

NIR T- 
MODIS 

7.07e-01 
(2.29e-02) *** 

-1.87e-05 
(1.35e-06) *** 

1.45e-02 
(3.66e-03) *** 

n. 
s. 

A- 
MODIS 

6.86e-01 
(2.32e-02) *** 

-1.73e-05 
(1.37e-06) *** 

1.14e-02 
(2.86e-03) *** 

n. 
s. 

S-VIIRS 6.86e-01 
(2.37e-02) *** 

-1.72e-05 
(1.40e-06) *** 

7.38e-03 
(3.78e-03) . 

n. 
s. 

Blue T- 
MODIS 

4.86e-01 
(2.05e-02) *** 

-1.44e-05 
(1.21e-06) *** 

-4.99e-02 
(3.28e-03) *** 

n. 
s. 

A- 
MODIS 

4.43e-01 
(2.06e-02) *** 

-1.20e-05 
(1.22e-06) *** 

-4.62e-02 
(2.55e-03) *** 

n. 
s. 

S-VIIRS 4.79e-01 
(2.26e-02) *** 

-1.32e-05 
(1.33e-06) *** 

-6.35e-03 
(3.60e-03) . 

n. 
s.  

a - ‘***’ – significant at <0.001; ‘**’ – significant at 0.01; ‘*’ – significant at 
0.05; ‘.’ – significant at 0.10; ‘n.s.’ – not significant (p-value >0.10). 

Table 4 
Mann-Kendall test results (τ valuesa) for satellite (near-nadir observations only) and RadCaTS reflectances.  

Sensor Red Reflectance NIR Reflectance Blue Reflectance 

Satellite RadCaTS Satellite RadCaTS Satellite RadCaTS 

T-MODIS − 0.294 *** − 0.275 *** − 0.286 *** − 0.280 *** − 0.280 *** − 0.269 *** 
A-MODIS − 0.304 *** − 0.241 *** − 0.273 *** − 0.267 *** − 0.259 *** − 0.230 *** 
S-VIIRS − 0.175 * − 0.243 *** − 0.187 * − 0.264 *** − 0.164 * − 0.220 ***  

a - ‘***’ – significant at <0.001; ‘**’ – significant at 0.01; ‘*’ – significant at 0.05; ‘.’ – significant at 0.10; ‘n.s.’ – not significant (p-value >0.10). 
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Fig. 7. Comparison of satellite-derived VIs to RadCaTS (ground-measured) counterparts over the RadCaTS site: (a) T-MODIS NDVI, (b) A-MODIS NDVI, (c) S-VIIRS 
NDVI, (d) T-MODIS EVI, (e) A-MODIS EVI, (f) S-VIIRS EVI, (g) T-MODIS EVI2, (h) A-MODIS EVI2, and (i) S-VIIRS EVI2. 
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For all of T-MODIS, A-MODIS, and S-VIIRS, the EVI was less variable 
than the NDVI throughout the study period (Fig. 7d-f). Both the means 
and regression analysis results indicated that T-MODIS EVI and A- 
MODIS EVI were lower than the RadCaTS counterparts, whereas S-VIIRS 
EVI was higher than the RadCaTS counterpart (Table 5 and b2 in 
Table 6). The EVI2 of all the three satellites had flat temporal signatures 
comparable to their respective RadCaTS counterparts (Fig. 7g-i). T- 
MODIS EVI2 and VIIRS EVI2 were higher than the RadCaTS counter
parts (Table 5; and b2 in Table 6). 

Both the regression analysis and MK test results indicated that T- 
MODIS and S-VIIRS NDVIs had neither increasing nor decreasing trends 
that were the same as their respective RadCaTS counterparts (non-sig
nificant b1 and b3 in Table 6; and significant τ at 0.10 for T-MODIS NDVI 
and non-significant τ for all the others in Table 7). For T-MODIS EVI and 

S-VIIRS EVI, the regression analysis results indicated decreasing trends 
for both the satellite and in situ data (significant b1 and non-significant b3 
in Table 6), whereas the MK test results indicated decreasing trends for 
the in situ EVIs, but not for the satellite EVIs (Table 7). The regression 
analysis found weakly decreasing trends for the satellite and in situ EVI2 
for T-MODIS (significant b1 at 0.10 and non-significant b3 in Table 6), 
but the MK test results indicated no trends for both (Table 7). For S- 
VIIRS EVI2, the regression analysis and MK test results found a 
decreasing trend for the in situ EVI2, but only the regression analysis 
found a significant trend for the satellite EVI2 (significant b1 and non- 
significant b3 in Table 6; and significant and non-significant τ for the 
RadCaTS and satellite, respectively, in Table 7). It was only A-MODIS of 
which satellite and in situ VIs showed different trends. All the three A- 
MODIS satellite VIs had increasing trends, whereas all the RadCaTS 
counterparts showed decreasing trends (Tables 6 and 7). 

In summary, the satellite VI temporal variations coincided with those 
of the in situ counterparts well. Other key results are summarized below:  

• T-MODIS and A-MODIS NDVIs and EVI2s were only slightly different 
(higher or lower) from the in situ counterparts.  

• The NDVI, EVI, and EVI2 of S-VIIRS were all consistently higher than 
the in situ counterparts.  

• The EVI was most inconsistent among the sensors, which was lower 
than the in situ data for T-MODIS and A-MODIS, but higher for S- 
VIIRS.  

• It was only A-MODIS VIs that had increasing trends for the study 
period. 

4.4. Analysis of off-nadir reflectances and VIs 

Plotted in Fig. 8. are T-MODIS off-nadir reflectances and VIs as an 
example. The red, NIR, and blue reflectances of the backward and for
ward scattering geometries show similar temporal variations, but the 
former was much higher than the latter (Fig. 8a-c). The NDVI was higher 
in the forward scattering direction than in the backward scattering di
rection (Fig. 8d). The EVI and EVI2 were also higher for the forward 
scattering geometry than for the backward scattering geometry, but 
their differences were smaller than those observed for the NDVI (Fig. 7e, 
f). 

In Fig. 9, view zenith angles are plotted against red reflectances in 
order to assess the change in red reflectance as a function of view zenith 
angle. The red reflectance varied the smallest at nadir or near-nadir view 
zenith angles, their values ranging for 0.30–0.43, 0.27–0.44, and 
0.29–0.43 for T-MODIS, A-MODIS, and S-VIIRS, respectively. With 
increasing view zenith angles, the red reflectances under the forward 
scattering geometry decreased and those under the backward scattering 
geometry increased, overall variations in reflectance increasing for all 

Table 5 
Summary statistics of satellite (near-nadir observations only) and RadCaTS VIs over the RadCaTS site. The numbers in parentheses are standard deviations.  

Sensor NDVI EVI EVI2 

Satellite RadCaTS Satellite RadCaTS Satellite RadCaTS 

T-MODIS 0.049 (0.006) 0.046 (0.007) 0.044 (0.004) 0.050 (0.007) 0.041 (0.005) 0.038 (0.005) 
A-MODIS 0.051 (0.006) 0.051 (0.007) 0.045 (0.004) 0.055 (0.008) 0.042 (0.004) 0.042 (0.006) 
S-VIIRS 0.059 (0.005) 0.050 (0.007) 0.067 (0.005) 0.059 (0.007) 0.050 (0.004) 0.042 (0.005)  

Table 6 
Results of regression analysis with dummy variables for satellite (near-nadir 
observations only) and RadCaTS VIs. The numbers in parentheses are standard 
errors.  

VI Sensor Parameter Estimatea (Standard Error) 

b0 b1 b2 b3 

NDVI T- 
MODIS 

3.85e-02 
(5.26e-03) 
*** 

4.47e-07 
(3.10e-07) n. 
s. 

3.14e-03 
(8.42e-04) 
*** 

n.s. 

A- 
MODIS 

7.68e-02 
(5.82e-03) 
*** 

− 1.54e-06 
(3.43e-07) 
*** 

− 6.73e-02 
(1.68e-02) 
*** 

3.96e-06 
(9.85e-07) 
*** 

S-VIIRS 5.66e-02 
(5.34e-03) 
*** 

− 3.66e-07 
(3.15e-07) n. 
s. 

9.06e-03 
(8.52e-04) 
*** 

n.s. 

EVI T- 
MODIS 

7.72e-02 
(5.40e-03) 
*** 

− 1.61e-06 
(3.18e-07) 
*** 

− 6.39e-03 
(8.64e-04) 
*** 

n.s. 

A- 
MODIS 

1.17e-01 
(5.54e-03) 
*** 

− 3.68e-06 
(3.27e-07) 
*** 

− 9.69e-02 
(1.60e-02) 
*** 

5.13e-06 
(9.38e-07) 
*** 

S-VIIRS 1.05e-01 
(5.12e-03) 
*** 

− 2.71e-06 
(3.02e-07) 
*** 

9.10e-03 
(8.07e-04) 
*** 

n.s. 

EVI2 T- 
MODIS 

4.62e-02 
(4.09e-03) 
*** 

− 4.73e-07 
(2.41e-07) . 

3.23e-03 
(6.54e-04) 
*** 

n.s. 

A- 
MODIS 

7.81e-02 
(4.44e-03) 
*** 

− 2.11e-06 
(2.62e-07) 
*** 

− 5.84e-02 
(1.28e-02) 
*** 

3.46e-06 
(7.52e-07) 
*** 

S-VIIRS 6.14e-02 
(3.94e-03) 
*** 

− 1.15e-06 
(2.33e-07) 
*** 

7.90e-03 
(6.29e-04) 
*** 

n.s.  

a - ‘***’ – significant at <0.001; ‘**’ – significant at 0.01; ‘*’ – significant at 
0.05; ‘.’ – significant at 0.10; ‘n.s.’ – not significant (p-value >0.10). 

Table 7 
Mann-Kendall test results (τ valuesa) for satellite (near-nadir observations only) and RadCaTS VIs.  

Sensor NDVI EVI EVI2 

Satellite RadCaTS Satellite RadCaTS Satellite RadCaTS 

T-MODIS 0.148 . 0.028 n.s. 0.028 n.s. − 0.103 *** 0.090 n.s. − 0.034 n.s. 
A-MODIS 0.356 *** − 0.085 *** 0.360 *** − 0.243 *** 0.334 *** − 0.151 *** 
S-VIIRS 0.045 n.s. − 0.023 n.s. − 0.116 n.s. − 0.185 *** − 0.019 n.s. − 0.094 ***  

a - ‘***’ – significant at <0.001; ‘**’ – significant at 0.01; ‘*’ – significant at 0.05; ‘.’ – significant at 0.10; ‘n.s.’ – not significant (p-value >0.10). 
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the three sensors (Fig. 9). The same view zenith angle-reflectance re
lationships were observed for the NIR and blue reflectances (not shown). 

The red and NIR reflectances formed linear relationships for each of 
the three sensors as expected (Fig. 10a-c). For T-MODIS, most of those 
regression lines (soil lines) derived for each view zenith angle bin 
overlapped and were not very different from a global regression line 
(soil line) which was derived from all the data (Fig. 10a). These soil lines 
were nearly parallel to the 1:1 line. The derived regression/soil lines for 
A-MODIS and S-VIIRS had the same behavior (Fig. 10b and c, respec
tively). In Fig. 10d and e, the corresponding RadCaTS reflectances are 
plotted for comparison, although they were limited to nadir re
flectances. These plots indicated that the red-NIR soil lines derived from 
the satellite data were basically comparable to those derived with 
RadCaTS reflectances. These results also support that the lower and 
higher reflectances due to larger view zenith angles plot along the same 

soil line (wider variations along the same soil line). 
In Fig. 11, we repeat the same analysis for the red and blue re

flectances. The red and blue reflectances also formed robust soil lines for 
all of the satellite sensor data (Fig. 11a-c). Soil lines derived for each 
view zenith angle bin had wider variations than those for the red-NIR 
soil lines, but these lines resided within the 95% prediction intervals 
of the global soil lines reasonably well. These robust relationships 
indicated that the off-nadir reflectances could be treated as the wider 
variations along the same soil line in the red-blue reflectance space as 
well. 

Unlike the red-NIR relationships, however, the red-blue relationships 
were slightly different between MODIS and VIIRS, and between the 
satellites and RadCaTS (Fig. 11). The RadCaTS relationships were nearly 
parallel to the 1:1 line, whereas the soil lines derived for the satellite 
data had higher slopes, corresponding to the previous analysis results 

Fig. 8. Temporal profiles of T-MODIS off-nadir reflectances and VIs over the RadCaTS site. View zenith angles were ~ 48◦ and ~ 47◦ for backward and forward 
scattering geometries, respectively. 
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where the satellite-measured blue reflectances were lower than the 
RadCaTS counterparts (Fig. 6). 

As the reflectance changes due to both the surface and viewing ge
ometry conditions could be explained by the variations along the same 

soil lines, the derived empirical soil lines and their 95% prediction in
tervals were projected onto the greenness (represented by VIs)- 
brightness (represented by the red reflectance) space (Fig. 12). The 
transformed soil lines were used to assess the satellite VI behaviors as a 
function of the soil brightness variations, i.e., how the soil lines aligned 
with the VI isolines (the gridlines parallel to the x-axis in each plot in 
Fig. 12) for each of the three VIs, and how the soil lines compared with 
those depicted by the in situ RadCaTS data. The NDVI decreased with 
increasing red reflectances for all the three sensors (Fig. 12a, d, g). The 
95% prediction intervals indicated that the potential range of NDVI 
values for a given red reflectance was wider for lower reflectance. 
RadCaTS NDVI, while only with nadir measurements, showed the same 
trends as those of the satellites, validating the satellite results (Fig. 12j, 
m). 

T-MODIS and A-MODIS EVIs decreased with increasing red re
flectances nearly linearly (Fig. 12b, e). In contrast, VIIRS EVI increased 
with increasing red reflectances nearly linearly (Fig. 12h). RadCaTS EVIs 
only slightly increased with red reflectances, indicating their low 
sensitivity to the target brightness variations (Fig. 12k, n). The satellite 
EVIs, in particular, T-MODIS and A-MODIS, behaved differently from 
RadCaTS EVIs. 

T-MODIS and A-MODIS EVI2s decreased with increasing red re
flectances in the same manner as their respective EVIs (Fig. 12c, f). T- 
MODIS and A-MODIS EVI2 values were also nearly the same with their 
EVI counterparts. VIIRS EVI2 decreased very little with increasing red 
reflectances, being insensitive to the target brightness variations 
(Fig. 12i). RadCaTS EVI2 decreased with increasing red reflectances, but 
at lower rates than T-MODIS and A-MODIS EVI2. Compared with the 
EVI, the satellite EVI2 behaviors were comparable among the three 
satellite sensors and with the in situ counterparts. 

Summarized in Table 8 are the mean VI and standard deviation 
values for this zero vegetation target, derived from all data. T-MODIS 
and A-MODIS VI mean values were comparable although A-MODIS VI 
mean values were slightly higher than the T-MODIS counterparts. S- 
VIIRS VI mean values were consistently higher than those of T-MODIS 
and A-MODIS. 

5. Summary and discussions 

In this study, the behavior of T-MODIS, A-MODIS, and S-VIIRS VIs 
was evaluated for zero vegetation conditions using the RRV playa, 
Nevada as the study site. The NDVI, EVI, and EVI2 were evaluated along 
with the input red, NIR, and blue reflectances. RadCaTS long-term, 
continuous in situ reflectance measurements, which were recently 
made available to the public via the RadCalNet portal (Bouvet et al., 
2019), were used as a reference in evaluating the multi-sensor VIs and 
reflectances. 

RadCaTS surface reflectance of the playa changed throughout sea
sons across years (0.3–0.45 for the red reflectance). T-MODIS, A-MODIS 
and S-VIIRS nadir/near-nadir reflectances captured these temporal 
variations well, having comparable temporal signatures to the RadCaTS 
counterparts. The satellite red and NIR reflectances were similar to or 
only slightly different from the RadCaTS counterparts, whereas T- 
MODIS and A-MODIS blue reflectances were lower than the RadCaTS 
counterparts (by ~0.05), and S-VIIRS blue reflectance was also lower 
than the RadCaTS counterpart by a smaller magnitude (~0.007). 

RadCaTS NDVI, EVI, and EVI2 of the playa surface increased and 
decreased occasionally, but were reasonably constant for the time 
period examined in this study. These VI’s temporal variations were less 
than the combined VI uncertainties propagated from the input re
flectances. The satellite NDVI, EVI, and EVI2 had fairly flat temporal 
signatures, comparable to the RadCaTS counterparts. T-MODIS and A- 
MODIS NDVI and EVI2 values were comparable to the RadCaTS coun
terparts, whereas T-MODIS and A-MODIS EVI values were lower than 
the RadCaTS counterparts (i.e., by ~0.006 and ~ 0.01 EVI units, 
respectively). All the three VIs of S-VIIRS were consistently higher than 

Fig. 9. View zenith angle vs. red reflectance plots for (a) T-MODIS, (b) A- 
MODIS, and (c) S-VIIRS. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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their RadCaTS counterparts (i.e., by ~0.008 VI units). 
For this study site, the red and NIR, and red and blue reflectances 

each formed linear relationships (i.e., soil lines) for each of the three 
sensors. Variations in reflectance due to surface conditions and obser
vation geometries all appeared as variations along the same soil lines. 
Thus, off-nadir VIs were included to obtain the expected VI values and 
variations for zero vegetation conditions (Table 8), and the soil lines 
were used to systematically compare the behavior of the satellite VIs 
with the RadCaTS counterparts. Among the three indices examined in 
this study, the NDVI and EVI2 behaviors of all the three satellite sensors 
were comparable to their respective RadCaTS counterparts as well as 
among the three sensors. T-MODIS and A-MODIS EVIs behaved differ
ently from the RadCaTS counterpart, whereas the S-VIIRS behavior was 
similar to the RadCaTS counterpart. 

5.1. VI vs. reflectance errors 

The satellite (including all of T-MODIS, A-MODIS, and S-VIIRS) vs. in 
situ reflectance differences for the red and NIR bands (0.01–0.015 level) 
obtained in this study were comparable to those reported by Vermote 
et al. (2014) who compared A-MODIS and S-VIIRS products with in- 
house, AERONET-corrected surface reflectance products. Our results of 
T-MODIS blue reflectance being lower than the in situ counterpart were 
also reported by Kharbouche et al. (2017) in their comparison results of 
T-MODIS reflectances with CAR-derived reflectances. In our results, A- 
MODIS blue reflectance was also lower than the in situ counterpart to the 
same degree with T-MODIS reflectance (i.e., by ~0.05), and S-VIIRS blue 
reflectance was lower than the in situ counterpart, but to a less degree (i. 
e., by ~0.007). 

Positive validation results of individual band reflectances did not 
always translate into positive validation results of VIs computed from 
those reflectances. S-VIIRS reflectances had the smallest differences 
from the RadCaTS reflectances among the three sensors examined in this 
study. At the same time, S-VIIRS VIs (in particular the NDVI and EVI2) 
had the largest differences from the RadCaTS counterparts among the 
three sensors. Since S-VIIRS NIR reflectance was higher than the Rad
CaTS counterpart, whereas S-VIIRS and RadCaTS red reflectances were 
not different, the higher NIR reflectance led to the higher S-VIIRS VI 
values than the RadCaTS counterparts. 

The reduced comparability of the satellite EVIs with the RadCaTS 
EVIs can be attributed to the blue band. For T-MODIS and A-MODIS 
EVIs, the lower blue reflectance made the EVI denominator higher, 
lowering the EVI values. Likewise, as shown in Fig. 11, the satellite blue- 
red reflectance relationships were different from those depicted by the in 
situ RadCaTS data. Our soil line analysis indicated that the different red- 
blue reflectance relationships were propagated into the slightly different 
EVI behaviors between the satellites and RadCaTS. 

5.2. Long-term trends of playa reflectance 

RadCaTS surface reflectance data indicated that the site reflectance 
decreased in the latter part of the year 2016, and remained lower for the 
rest of the study period. All the satellite reflectance data showed the 
same temporal patterns. We suspect that the white crust cover of the 
RadCaTS site slightly decreased in the year 2016, lowering the site 
reflectance after the event. According to the Blue Eagle Ranch weather 
station data, the playa experienced the largest winter snowfall in the 
2016 winter during the study period along with the high rainfall that 

Fig. 10. NIR vs. red reflectance plots for (a) T-MODIS, (b) A-MODIS, (c) S-VIIRS, (d) RadCaTS band-averaged for MODIS bandpasses, and (e) RadCaTS band-averaged 
for VIIRS bandpasses. The thick and dashed red lines shown in individual plots are the regression lines and 95% prediction intervals derived using all data points on 
their corresponding plots. The thin black lines represent regression lines derived for individual view zenith angle bins. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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continued throughout the 2016 spring (Fig. 3). These wet weather 
events might have reduced the white crust coverage. In the year 2020, 
the site reflectance increased again (Czapla-Myers, J., 2020, Unpub
lished results), indicating the dynamic nature of the site reflectance. 
Recently, digital cameras were installed for time-lapse photography of 
the RadCaTS site (Czapla-Myers, J., 2020, Personal communication). It 
is expected that the relationship between the site reflectance and surface 
condition (e.g., white crust cover) will be understood better as the 
RadCaTS data continues to be collected for years to come. 

It was only A-MODIS VIs that had increasing trends over the study 
period. An enhanced “response-versus-scan-angle (RVS)” calibration 
approach was applied to A-MODIS red, NIR, and blue bands only from 9 
July 2016 onward, whereas the approach was implemented in T-MODIS 
red, NIR, and blue bands from 24 February 2000 onward (Bhatt et al., 
2020). It is possible that this RVS calibration approach change did not 
affect the reflectance analysis results, but affected the trend analysis 
results of VIs derived from the reflectances. At the time of this writing, 
MODIS Collection 6.1 Land products are being generated where the 
enhanced RVS approach is applied to the entire A-MODIS data record 
(from 25 June 2002 onward). 

5.3. Uncertainty of zero vegetation NDVI 

The present study showed that the NDVI decreased with the soil 
brightness even for this single soil type. This indicates that the NDVI 
could falsely detect or miss the presence of green vegetation when a 
single NDVI value (e.g., the mean, minimum, or maximum) was used to 
define the zero vegetation NDVI value even for the same soil back
ground. For example, if the minimum NDVI value was used as a 
threshold, this NDVI-based vegetation detection would falsely inform 
the emergence of green vegetation or overestimate the green vegetation 
amount when the soil reflectance became lower due to the wetting of the 
soil surface or due to the forward scattering geometry (see Fig. 11). This 

will particularly be apparent in sparsely-vegetated areas or areas with 
intermediate vegetation cover as the contribution and influence of soil 
background reflectance to the top-of-canopy reflectance are significant 
in these areas (Privette et al., 1995). These results suggest to incorporate 
the soil brightness as an additional factor in determining the zero 
vegetation NDVI value to further reduce the uncertainty of the NDVI- 
based detection or quantification of biophysical parameters. Using 
nadir-BRDF-adjusted reflectances (e.g., MCD43) in place of temporally- 
composited products (e.g., MOD/MYD09 or MOD/MYD13) as the 
input reflectance source for VIs can reduce some of the soil brightness 
variations as the observation geometry is standardized to nadir viewing 
and, thus, reduce the uncertainty of the zero vegetation NDVI value. 

5.4. Soil brightness effects on EVI 

The EVI, that is a heritage of the soil-adjusted VI (SAVI), is designed 
to reduce the VI variations due to soil background brightness (Huete 
et al., 2002). This EVI characteristic can be demonstrated by the trans
formed soil line in the EVI-brightness space being parallel to the EVI 
isolines. RadCaTS EVIs showed this behavior where the data and soil 
lines were nearly parallel to the EVI isolines (Fig. 12k and n). For T- 
MODIS and A-MODIS EVIs, in contrast, the data and soil lines were not 
parallel to the EVI isolines, having their dependency to soil brightness. S- 
VIIRS EVI was less sensitive to soil background brightness variations, yet 
the projected soil line onto the EVI-brightness space had a steeper slope 
than the RadCaTS EVI counterpart. It is very likely that the negative bias 
in the blue reflectance impacted the EVI’s ability to reduce the influence 
of soil brightness variations for T-MODIS and A-MODIS. For S-VIIRS EVI, 
it is not only the negative bias in the blue reflectance, but also the blue 
bandpass difference that contributed to this slightly-reduced EVI per
formance as the EVI coefficients optimized for the MODIS bandpasses 
were adopted for S-VIIRS. Obata et al. (2016) conducted a spectral cross- 
calibration experiment to derive a MODIS-compatible EVI from S-VIIRS 

Fig. 11. Same as Fig. 10, but for red vs. blue reflectances. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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Fig. 12. VI vs. red reflectance plots. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)  
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reflectances using A-MODIS and S-VIIRS year-long global surface 
reflectance data. This cross-calibration exercise found an optimum C2 
coefficient value (see Eq. 4) to be ~6.5 which is lower than the current 
value of 7.5. 

5.5. EVI-to-EVI2 consistency 

T-MODIS and A-MODIS EVI2s did not normalize the soil brightness 
effect, i.e., the transformed soil lines were not parallel to the EVI2 iso
lines. They behaved in the same way as their EVI counterparts, indi
cating excellent inter-VI compatibility. As described in Section 3.1, the 
EVI2 coefficients were determined for the optimum compatibility with 
the EVI for the MODIS bandpasses using actual MODIS surface reflec
tance data. RadCaTS EVI and EVI2 were different both in their values 
and in their behaviors, that is, the EVI and EVI2 soil lines were not 
parallel to each other. Interestingly, the S-VIIRS EVI and EVI2 soil lines 
were more comparable between them while their VI values were 
different. 

Jiang et al. (2008) described that the optimization process can be 
considered as finding an appropriate blue-to-red reflectance ratio, and 
found 0.48 to be the optimum value for MODIS surface reflectance 
products [Jiang et al. (2008) actually obtained a red-to-blue reflectance 
ratio value, which was 2.08]. Here, the reflectance data in Fig. 12 were 
used to obtain the blue-to-red reflectance ratio. It was 0.52 for both T- 
MODIS and A-MODIS, but 0.68 for RadCaTS (MODIS). This supports that 
the current EVI2 coefficient is based on the relationship between the red 
and negatively-biased blue reflectances of MODIS. The blue-to-red 
reflectance ratio was 0.69 for S-VIIRS and 0.72 for RadCaTS (VIIRS). 

Fensholt et al. (2006) reported the reduced cross-sensor 

compatibility of the EVI among T-MODIS, A-MODIS, MERIS, and 
VEGETATION, and attributed it to the different atmospheric correction 
schemes of the blue band. Given the highly sensitive blue band to the 
atmospheric correction scheme and the accurate atmospheric correction 
results achieved and demonstrated for the red and NIR reflectances, the 
choice of the EVI2 over the EVI is logical. 

Similar VI validation exercises to this study (i.e., using long-term in 
situ reflectance data as a reference) should be conducted for other bare 
soils to cover a range of soil brightness and types. They should also be 
performed for sparsely-to-intermediately vegetated areas where the soil 
background reflectance contributes to the top-of-canopy reflectance to 
examine how the soil lines and VI isolines align in the presence of green 
vegetation. It is important that these validation exercises not only 
evaluate VIs and input reflectances, but also the reflectance relation
ships across bands. The results of the present study suggest to re- 
optimize the EVI2 coefficients with in situ reflectance data first and 
then evaluate the applicability of the optimized coefficients with satel
lite data. Reliable optimization results of the EVI and EVI2 may only be 
achieved with a large number of validation results with long-term in situ 
reflectance data as a reference. 
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Appendix I. Uncertainty Propagation Equations for Select Vegetation Indices 

I.1. Enhanced Vegetation Index (EVI): 

u2(EVI) =
(

∂EVI
∂ρNIR

)2

u2(ρNIR)+

(
∂EVI
∂ρred

)2

u2(ρred)+

(
∂EVI
∂ρred

)2

u2(ρred)+ 2
∂EVI
∂ρNIR

∂EVI
∂ρred

u(ρNIR)u(ρred)rNIR,red + 2
∂EVI
∂ρred

∂EVI
∂ρblue

u(ρred)u(ρblue)rred,blue

+ 2
∂EVI
∂ρblue

∂EVI
∂ρNIR

u(ρblue)u(ρNIR)rblue,NIR

(A1)  

where 

∂EVI
∂ρNIR

=
G[(1 + C1)ρred − C2ρblue + L ]

(ρNIR + C1ρred − C2ρblue + L)2 (A2)  

∂EVI
∂ρred

=
− G[(1 + C1)ρNIR − C2ρblue + L ]

(ρNIR + C1ρred − C2ρblue + L)2 (A3)  

∂EVI
∂ρblue

=
GC2(ρNIR − ρred)

(ρNIR + C1ρred − C2ρblue + L)2 (A4)  

Table 8 
Summary statistics of satellite VIs for zero vegetation conditions represented by 
the RadCaTS site. The numbers in parentheses are standard deviations.   

NDVI EVI EVI2 

T-MODIS 0.057 (0.010) 0.048 (0.006) 0.046 (0.007) 
A-MODIS 0.058 (0.012) 0.050 (0.007) 0.048 (0.007) 
S-VIIRS 0.065 (0.007) 0.070 (0.006) 0.053 (0.005)  
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I.2. Two-band, Enhanced Vegetation Index (EVI2): 

u2(EVI2) =
(

∂EVI2
∂ρNIR

)2

u2(ρNIR)+

(
∂EVI2
∂ρred

)2

u2(ρred)+ 2
∂EVI2
∂ρNIR

∂EVI2
∂ρred

u(ρNIR)u(ρred)rNIR,red (A5)  

where 

∂EVI2
∂ρNIR

=
2.5(3.4ρred + 1)

(ρNIR + 2.4ρred + 1)2 (A6)  

∂EVI2
∂ρred

=
− 2.5(3.4ρNIR + 1)
(ρNIR + 2.4ρred + 1)2 (A7)  
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